

Паспорт 3425-038-33714453-2019 ПС

РЕЛЕ НАПРЯЖЕНИЯ И ТОКА ПРОХОДНЫЕ С ИНДИКАЦИЕЙ RV-1IU

1. Назначение

Реле напряжения и тока проходные с индикацией RV-1IU предназначены для защиты бытовых и промышленных электроустановок от повышенного и пониженного напряжений и от перегрузки по току путём отключения питания при выходе контролируемых и отображаемых на дисплее значений U и I за установленные пределы.

Реле напряжения и тока проходные с индикацией RV-1IU соответствуют ГОСТ IEC 60947-5-1 (IEC 60947-5-1).

2. Технические данные, условия эксплуатации

Условия эксплуатации представлены в таблице №1.

Технические данные реле напряжения и тока указаны в таблице №2. Таблица №1 - Условия эксплуатации

,,		
Температура эксплуатации, °С	от -5 до +40	
Допустимая влажность воздуха при 40 °C, %	не более 50	
Высота установки над уровнем моря, м	не более 2000	
Температура хранения, °С	от -30 до +55	
Степень защиты	IP20	

3. Устройство и работа

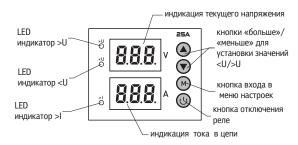
Реле напряжения и тока представляют собой устройства в модульном корпусе с лицевой панелью, на которой расположены два Зх-разрядных ЖК-дисплея для отображения текущих напряжения и тока в однофазной цепи, кнопки для программирования реле, а также три красных светодиодных индикатора для сигнализации аварийного отключения:

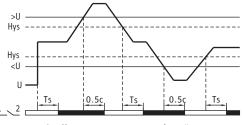
- при повышенном напряжении >U;
- при пониженном напряжении <U;
- при перегрузке по току >I.

Внешний вид лицевой панели реле напряжения в режиме ожидания представлен на рисунке ${\bf 1}.$

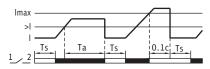
Реле напряжения подключается в разрыв однофазной цепи нагрузки и находится во включенном состоянии (NO контакт замкнут), если контролируемое напряжение U находится в установленном диапазоне, а ток в цепи не превышает значения уставки тока перегрузки.

Таблица №2 - Технические данные					
Номильный ток однофазной нагрузки In, A	25	32	40	20	63
Номинальное напряжение питания, В			AC 230		
Номинальное рабочее напряжение, В			80-400		
Частота переменного тока, Гц			20-60		
Максимальный рабочий ток (не более 10 мин) Ітах, А	30	40	20	09	80
Диапазон регулировки уставки тока перегрузки >I, A	16-25	16-25 16-32	16-40	16-40 16-50 16-63	16-63
Максимальная мощность нагрузки, кВт	5,5	7	8,8	11	13,9
Контакты			1 NO		
Напряжение изоляции, В			450		
Диапазон регулировки минимального напряжения <u, td="" в<=""><td></td><td>120-2</td><td>120-210 (mar 1B)</td><td>r 1B)</td><td></td></u,>		120-2	120-210 (mar 1B)	r 1B)	
Диапазон регулировки максимального напряжения >U, В		220-3	220-300 (mar 1B)	r 1B)	
Гистерезис по напряжению Нуѕ			7%		
Задержка отключения при повышенном напряжении, сек			0,5		
Задержка отключения при пониженном напряжении, сек	0,5 пр	и U≥120	JB; <0 ,	0,5 при U≥120В; <0,1 при U<120В	120B
Диапазон регулировки выдержки времени повторного включения Тs, сек		2-60	5-600 (шаг 1сек)	Lcek)	
Диапазон регулировки выдержки времени отключения по перегрузке Та, сек		2-60	5-600 (шаг 1сек)	Lcek)	
Точность измерения напряжения			≥1%		
Износостойкость механическая/электрическая, циклов			$10^{6}/10^{5}$		
Корпус - количество модулей шириной 18 мм			2		
Монтаж		Din-p	Din-рейка 35 мм	5 MM	
Подключение - макс. сечение кабеля, мм²	9	8	10	16	16
Момент затяжки, Нм			0,5		
Масса, г			156		
Габариты (ВхШхГ), мм		×06	90x53,5x65,5	5.5	




Рисунок 1 - Внешний вид проходного реле напряжения и тока

Когда напряжение превышает порог >U или становится ниже заданного значения <U, а также в случае перегрузки по току, контакт реле 1-2 размыкается, цепь питания нагрузки разрывается. При возникновении тока выше значения >I аварийное отключение цепи по перегрузке происходит с выдержкой времени Та, а при превышении тока в цепи больше, чем Ітах, установленное время выдержки Та не учитывается и контакты реле размыкаются в течение не более 0,1 сек.


После восстановления напряжения питания (по уровню Hys) и снижения тока в цепи до уровня ниже >I, повторное включение реле происходит автоматически через заданное в настройках время Тs. Первое включение реле после подачи напряжения U также происходит с выдержкой времени Ts.

В режиме перезапуска реле во время отсчета времени Тs значения текущего напряжения и тока в цепи мигают на дисплеях. После включения реле переходит в режим ожидания и напряжение и ток на дисплеях отображаются нормально (непрерывно).

Временные диаграммы работы реле напряжения и тока показаны на рисунке 2.

2а - Контроль напряжения однофазной цепи

26 - Контроль тока в однофазной цепи

Рисунок 2 - Временные диаграммы работы проходного реле напряжения и тока

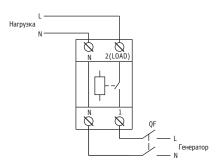
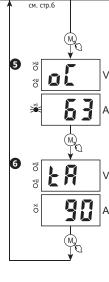


Рисунок 3 - Схема подключения проходного реле напряжения и тока

4. Программирование

Главное меню настроек

см. стр.7


- В режиме ожидания на верхнем дисплее отображается напряжение, а на нижнем дисплее - ток в однофазной цепи. Для входа в меню настроек нажмите кнопку «М» на 3 или более секунды.
- «М» на 3 или более секунды.

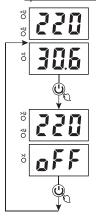
 2. Первый раздел меню это установка максимального напряжения >U. На верхнем дисплее отобразится символ «оU», а на нижнем значение >U заводской или предыдущей настройки. Индикатор максимального напряжения слева вверху начнет мигать. Кнопками «▲ и ▼» установите нужное значение и нажмите «М» для подтверждения настроек и перехода в следующий раздел меню.
- минимального напряжения <U на верхнем дисплее отобразится символ «uU», а на нижнем значение <U заводской или предыдущей настройки. Индикатор минимального напряжения слева средний начнет мигать. Кнопками « и ту установите нужное значение и нажмите «М» для подтверждения настроек и перехода в следующий раздел меню.

3. При входе в раздел

vстановки

4. При входе в раздел установки выдержки времени повторного включения Тѕ на верхнем дисплее отобразится символ «tS», а на нижнем - значение Тѕ заводской или предыдущей настройки. Кнопками «▲ и ▼» установите нужное значение и нажмите «М» для подтверждения настроек и перехода в следующий раздел меню.

5. При входе в раздел установки перегрузки по току >I на верхнем дисплее отобразится символ «оС», а на нижнем значение >І заводской или предыдущей настройки. Индикатор перегрузки по току слева нижний начнет мигать. Кнопками «- и ▼» установите нужное значение и нажмите «М» для подтверждения настроек и перехода в следующий раздел меню. 6. При входе в раздел установки выдержки времени отключения по перегрузки Та на верхнем дисплее отобразится символ «tA», а на нижнем - значение Та заводской или предыдущей настройки. Кнопками « ли ▼» установите нужное значение и нажмите «М» для подтверждения настроек и выхода из главного меню настроек.


После установки нужного значения без подтверждения нажатием кнопки «М» в течении 60 сек реле выходит в режим ожидания без сохранения настроек.

Заводские настройки

Таблица №3 - заводские настройки реле

тавлица и в ваводение настролит реле	
Параметр	Значение
Максимальное напряжение >U, В	250
Минимальное напряжение <u, td="" в<=""><td>170</td></u,>	170
Время выдержки повторного включения Ts, сек	15
Время выдержки отключения реле по перегрузке Та, сек	90
Уставка перегрузки по току, А	ln


Ручное отключение реле

Для ручного отключения реле (контакты 1-2 разомкнуты) в режиме ожидания нажмите на кнопку « \mathbf{U} », при этом на нижнем дисплее отобразится «оFF» и контакт 1-2 вернется в разомкнутое состояние, питание нагрузки будет отключено.

Для повторного включения реле еще раз нажмите кнопку « 🖰 ». Нормально открытый контакт 1-2 замкнется, питание нагрузки восстановится и через время Тѕ реле вернется в режим ожидания.

Повторный запуск реле после трехкратного включения на перегрузку

После отключения реле по одной из аварий (>U. <U. >I) реле автоматически повторно включается через установленное время выдержки Тs. Если напряжение или ток в цепи не восстановился до допустимых пределов в течении времени Ts, то реле снова отключается. случае трехкратной безуспешной попытки повторного включения реле в цепь с током выше уставки >l (перегрузка не устранена), на нижнем дисплее отображается символ «Err», контакт реле 1-2 остается разомкнут и реле может быть запущено только после перезагрузки через кнопку « (¹) ».

5. Монтаж и подключение

Монтаж, подключение и эксплуатация реле должны производиться в соответствии с «Правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей».

Монтаж и осмотр реле должен производиться при снятом напряжении в соответствии со схемой подключения, представленной на рисунке 3.

По способу защиты от поражения электрическим током реле соответствуют классу защиты «О» по ГОСТ Р 61140.

6. Техническое обслуживание

При нормальных условиях эксплуатации необходимо проводить осмотр реле один раз в год.

При осмотре производится: удаление пыли и грязи; проверка надежности крепления реле к DIN-рейке; проверка затяжки винтов крепления проводников.

Реле в условиях эксплуатации неремонтопригодны. При обнаружении неисправности подлежат замене.

7. Габаритные и установочные размеры

8. Транспортирование и хранение

Транспортирование реле в части воздействия механических факторов осуществляется по группе С ГОСТ 23216, климатический фактор по группе 5 ГОСТ 15150. Транспортирование упакованных реле должно исключать возможность прямого воздействия на них атмосферных осадков и агрессивных сред.

Хранение реле в части воздействия климатических факторов по группе 2(C) ГОСТ 15150. Хранение реле осуществляется в упаковке изготовителя в помещении с естественной вентиляцией при температуре окружающего воздуха от -30°C до +55°C и относительной влажности 60-70%.

9. Сведения об утилизации

Реле после окончания срока службы подлежат передаче организациям, которые перерабатывают чёрные и цветные металлы.

В конструкции реле отсутствуют вещества и металлы, опасные для здоровья людей и окружающей среды.

10. Комплект поставки

- Реле напряжения и тока проходное с индикацией RV-1IU;
- Паспорт 3425-038-33714453-2019 ПС.

11. Гарантийные обязательства

Изготовитель гарантирует соответствие характеристик реле напряжения и тока при соблюдении потребителемусловийтранспортирования, хранения, монтажа и эксплуатации.

Гарантийный срок устанавливается 5 лет со дня ввода реле напряжения и тока в эксплуатацию при числе циклов коммутационной и механической износостойкости, не превышающем установленного в настоящем руководстве, но не более 5,5 лет с момента изготовления.

12. Свидетельство о приемке

Реле напряжения и тока проходные с индикацией RV-1IU соответствуют ГОСТ IEC 60947-5-1 (IEC 60947-5-1), ТР ТС 004/2011 и признаны годными к эксплуатации.

Дата выпуска	Печать ОТК	
		М.П.